Data
lsvt

lsvt

active ARFF Publicly available Visibility: public Uploaded 22-05-2015 by Rafael Gomes Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Data Science Speech Therapy study_50 study_52 study_7
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Athanasios Tsanas Source: UCI Please cite: A. Tsanas, M.A. Little, C. Fox, L.O. Ramig: Objective automatic assessment of rehabilitative speech treatment in Parkinsons disease, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 22, pp. 181-190, January 2014 Dataset title laLSVT Voice Rehabilitation Data Set Source: The dataset was created by Athanasios Tsanas (tsanasthanasis '@' gmail.com) of the University of Oxford. Abstract: 126 samples from 14 participants, 309 features. Aim: assess whether voice rehabilitation treatment lead to phonations considered 'acceptable' or 'unacceptable' (binary class classification problem). Data Set Information: The original paper demonstrated that it is possible to correctly replicate the experts' binary assessment with approximately 90% accuracy using both 10-fold cross-validation and leave-one-subject-out validation. We experimented with both random forests and support vector machines, using standard approaches for optimizing the SVM's hyperparameters. It will be interesting if researchers can improve on this finding using advanced machine learning tools. Details for the dataset can be found on the following paper. A. Tsanas, M.A. Little, C. Fox, L.O. Ramig: “Objective automatic assessment of rehabilitative speech treatment in Parkinson’s disease”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 22, pp. 181-190, January 2014 A freely available preprint is availabe from the first author's website. Attribute Information: Each attribute (feature) corresponds to the application of a speech signal processing algorithm which aims to characterise objectively the signal. These algorithms include standard perturbation analysis methods, wavelet-based features, fundamental frequency-based features, and tools used to mine nonlinear time-series. Because of the extensive number of attributes we refer the interested readers to the relevant papers for further details. Relevant Papers: The dataset was introduced in: A. Tsanas, M.A. Little, C. Fox, L.O. Ramig: “Objective automatic assessment of rehabilitative speech treatment in Parkinson’s disease”, IEEE Transactions on Neural Systems and Rehabilitation Engineering, Vol. 22, pp. 181-190, January 2014 Further details about the speech signal processing algorithms can be found in: A. Tsanas, Accurate telemonitoring of Parkinson’s disease symptom severity using nonlinear speech signal processing and statistical machine learning, D.Phil. (Ph.D.) thesis, University of Oxford, UK, 2012 A. Tsanas, M.A. Little, P.E. McSharry, L.O. Ramig: “Nonlinear speech analysis algorithms mapped to a standard metric achieve clinically useful quantification of average Parkinson’s disease symptom severity”, Journal of the Royal Society Interface, Vol. 8, pp. 842-855, 2011 A. Tsanas, M.A. Little, P.E. McSharry, L.O. Ramig: “New nonlinear markers and insights into speech signal degradation for effective tracking of Parkinson’s disease symptom severity”, International Symposium on Nonlinear Theory and its Applications (NOLTA), pp. 457-460, Krakow, Poland, 5-8 September 2010 Preprints are available on the first author's website.

311 features

Class (target)nominal2 unique values
0 missing
V1numeric126 unique values
0 missing
V257numeric125 unique values
0 missing
V2numeric126 unique values
0 missing
V258numeric126 unique values
0 missing
V3numeric118 unique values
0 missing
V259numeric126 unique values
0 missing
V4numeric42 unique values
0 missing
V260numeric125 unique values
0 missing
V5numeric118 unique values
0 missing
V261numeric42 unique values
0 missing
V6numeric126 unique values
0 missing
V262numeric73 unique values
0 missing
V7numeric39 unique values
0 missing
V263numeric93 unique values
0 missing
V8numeric126 unique values
0 missing
V264numeric124 unique values
0 missing
V9numeric126 unique values
0 missing
V265numeric123 unique values
0 missing
V10numeric126 unique values
0 missing
V266numeric123 unique values
0 missing
V11numeric126 unique values
0 missing
V267numeric125 unique values
0 missing
V12numeric126 unique values
0 missing
V268numeric126 unique values
0 missing
V13numeric126 unique values
0 missing
V269numeric125 unique values
0 missing
V14numeric126 unique values
0 missing
V270numeric126 unique values
0 missing
V15numeric126 unique values
0 missing
V271numeric126 unique values
0 missing
V16numeric28 unique values
0 missing
V272numeric126 unique values
0 missing
V17numeric126 unique values
0 missing
V273numeric126 unique values
0 missing
V18numeric118 unique values
0 missing
V274numeric126 unique values
0 missing
V19numeric41 unique values
0 missing
V275numeric126 unique values
0 missing
V20numeric120 unique values
0 missing
V276numeric126 unique values
0 missing
V21numeric81 unique values
0 missing
V277numeric126 unique values
0 missing
V22numeric37 unique values
0 missing
V278numeric126 unique values
0 missing
V23numeric2 unique values
0 missing
V279numeric126 unique values
0 missing
V24numeric8 unique values
0 missing
V280numeric126 unique values
0 missing
V25numeric2 unique values
0 missing
V281numeric126 unique values
0 missing
V26numeric1 unique values
0 missing
V282numeric126 unique values
0 missing
V27numeric1 unique values
0 missing
V283numeric126 unique values
0 missing
V28numeric1 unique values
0 missing
V284numeric126 unique values
0 missing
V29numeric126 unique values
0 missing
V285numeric126 unique values
0 missing
V30numeric108 unique values
0 missing
V286numeric126 unique values
0 missing
V31numeric126 unique values
0 missing
V287numeric126 unique values
0 missing
V32numeric126 unique values
0 missing
V288numeric126 unique values
0 missing
V33numeric125 unique values
0 missing
V289numeric126 unique values
0 missing
V34numeric108 unique values
0 missing
V290numeric126 unique values
0 missing
V35numeric126 unique values
0 missing
V291numeric126 unique values
0 missing
V36numeric126 unique values
0 missing
V292numeric126 unique values
0 missing
V37numeric118 unique values
0 missing
V293numeric126 unique values
0 missing
V38numeric126 unique values
0 missing
V294numeric126 unique values
0 missing
V39numeric126 unique values
0 missing
V295numeric126 unique values
0 missing
V40numeric119 unique values
0 missing
V296numeric126 unique values
0 missing
V41numeric126 unique values
0 missing
V297numeric126 unique values
0 missing
V42numeric126 unique values
0 missing
V298numeric126 unique values
0 missing
V43numeric126 unique values
0 missing
V299numeric126 unique values
0 missing
V44numeric126 unique values
0 missing
V300numeric126 unique values
0 missing
V45numeric126 unique values
0 missing
V301numeric126 unique values
0 missing
V46numeric126 unique values
0 missing
V302numeric126 unique values
0 missing
V47numeric126 unique values
0 missing
V303numeric126 unique values
0 missing
V48numeric126 unique values
0 missing
V304numeric126 unique values
0 missing
V49numeric126 unique values
0 missing
V305numeric126 unique values
0 missing
V50numeric126 unique values
0 missing
V306numeric126 unique values
0 missing
V51numeric126 unique values
0 missing
V307numeric126 unique values
0 missing
V52numeric126 unique values
0 missing
V308numeric126 unique values
0 missing
V53numeric126 unique values
0 missing
V309numeric126 unique values
0 missing
V54numeric126 unique values
0 missing
V310numeric126 unique values
0 missing
V55numeric126 unique values
0 missing
V56numeric62 unique values
0 missing
V57numeric126 unique values
0 missing
V58numeric64 unique values
0 missing
V59numeric126 unique values
0 missing
V60numeric126 unique values
0 missing
V61numeric56 unique values
0 missing
V62numeric126 unique values
0 missing
V63numeric126 unique values
0 missing
V64numeric126 unique values
0 missing
V65numeric126 unique values
0 missing
V66numeric126 unique values
0 missing
V67numeric126 unique values
0 missing
V68numeric126 unique values
0 missing
V69numeric126 unique values
0 missing
V70numeric126 unique values
0 missing
V71numeric126 unique values
0 missing
V72numeric126 unique values
0 missing
V73numeric126 unique values
0 missing
V74numeric126 unique values
0 missing
V75numeric126 unique values
0 missing
V76numeric126 unique values
0 missing
V77numeric126 unique values
0 missing
V78numeric126 unique values
0 missing
V79numeric126 unique values
0 missing
V80numeric126 unique values
0 missing
V81numeric126 unique values
0 missing
V82numeric125 unique values
0 missing
V83numeric126 unique values
0 missing
V84numeric126 unique values
0 missing
V85numeric126 unique values
0 missing
V86numeric126 unique values
0 missing
V87numeric126 unique values
0 missing
V88numeric126 unique values
0 missing
V89numeric126 unique values
0 missing
V90numeric126 unique values
0 missing
V91numeric126 unique values
0 missing
V92numeric126 unique values
0 missing
V93numeric126 unique values
0 missing
V94numeric126 unique values
0 missing
V95numeric126 unique values
0 missing
V96numeric126 unique values
0 missing
V97numeric123 unique values
0 missing
V98numeric126 unique values
0 missing
V99numeric125 unique values
0 missing
V100numeric126 unique values
0 missing
V101numeric126 unique values
0 missing
V102numeric125 unique values
0 missing
V103numeric126 unique values
0 missing
V104numeric123 unique values
0 missing
V105numeric125 unique values
0 missing
V106numeric124 unique values
0 missing
V107numeric124 unique values
0 missing
V108numeric126 unique values
0 missing
V109numeric125 unique values
0 missing
V110numeric125 unique values
0 missing
V111numeric111 unique values
0 missing
V112numeric123 unique values
0 missing
V113numeric122 unique values
0 missing
V114numeric121 unique values
0 missing
V115numeric122 unique values
0 missing
V116numeric117 unique values
0 missing
V117numeric120 unique values
0 missing
V118numeric115 unique values
0 missing
V119numeric121 unique values
0 missing
V120numeric117 unique values
0 missing
V121numeric119 unique values
0 missing
V122numeric121 unique values
0 missing
V123numeric120 unique values
0 missing
V124numeric119 unique values
0 missing
V125numeric126 unique values
0 missing
V126numeric126 unique values
0 missing
V127numeric126 unique values
0 missing
V128numeric4 unique values
0 missing
V129numeric126 unique values
0 missing
V130numeric35 unique values
0 missing
V131numeric55 unique values
0 missing
V132numeric72 unique values
0 missing
V133numeric104 unique values
0 missing
V134numeric104 unique values
0 missing
V135numeric117 unique values
0 missing
V136numeric120 unique values
0 missing
V137numeric121 unique values
0 missing
V138numeric125 unique values
0 missing
V139numeric123 unique values
0 missing
V140numeric126 unique values
0 missing
V141numeric126 unique values
0 missing
V142numeric126 unique values
0 missing
V143numeric126 unique values
0 missing
V144numeric126 unique values
0 missing
V145numeric126 unique values
0 missing
V146numeric126 unique values
0 missing
V147numeric126 unique values
0 missing
V148numeric126 unique values
0 missing
V149numeric126 unique values
0 missing
V150numeric126 unique values
0 missing
V151numeric126 unique values
0 missing
V152numeric126 unique values
0 missing
V153numeric126 unique values
0 missing
V154numeric126 unique values
0 missing
V155numeric126 unique values
0 missing
V156numeric126 unique values
0 missing
V157numeric126 unique values
0 missing
V158numeric126 unique values
0 missing
V159numeric126 unique values
0 missing
V160numeric125 unique values
0 missing
V161numeric126 unique values
0 missing
V162numeric126 unique values
0 missing
V163numeric126 unique values
0 missing
V164numeric126 unique values
0 missing
V165numeric126 unique values
0 missing
V166numeric126 unique values
0 missing
V167numeric126 unique values
0 missing
V168numeric126 unique values
0 missing
V169numeric126 unique values
0 missing
V170numeric126 unique values
0 missing
V171numeric126 unique values
0 missing
V172numeric126 unique values
0 missing
V173numeric126 unique values
0 missing
V174numeric126 unique values
0 missing
V175numeric126 unique values
0 missing
V176numeric126 unique values
0 missing
V177numeric126 unique values
0 missing
V178numeric126 unique values
0 missing
V179numeric126 unique values
0 missing
V180numeric126 unique values
0 missing
V181numeric126 unique values
0 missing
V182numeric126 unique values
0 missing
V183numeric126 unique values
0 missing
V184numeric126 unique values
0 missing
V185numeric126 unique values
0 missing
V186numeric126 unique values
0 missing
V187numeric126 unique values
0 missing
V188numeric126 unique values
0 missing
V189numeric126 unique values
0 missing
V190numeric126 unique values
0 missing
V191numeric126 unique values
0 missing
V192numeric126 unique values
0 missing
V193numeric126 unique values
0 missing
V194numeric126 unique values
0 missing
V195numeric126 unique values
0 missing
V196numeric126 unique values
0 missing
V197numeric126 unique values
0 missing
V198numeric126 unique values
0 missing
V199numeric126 unique values
0 missing
V200numeric126 unique values
0 missing
V201numeric126 unique values
0 missing
V202numeric126 unique values
0 missing
V203numeric126 unique values
0 missing
V204numeric126 unique values
0 missing
V205numeric126 unique values
0 missing
V206numeric126 unique values
0 missing
V207numeric126 unique values
0 missing
V208numeric126 unique values
0 missing
V209numeric126 unique values
0 missing
V210numeric126 unique values
0 missing
V211numeric126 unique values
0 missing
V212numeric126 unique values
0 missing
V213numeric126 unique values
0 missing
V214numeric126 unique values
0 missing
V215numeric126 unique values
0 missing
V216numeric126 unique values
0 missing
V217numeric126 unique values
0 missing
V218numeric126 unique values
0 missing
V219numeric126 unique values
0 missing
V220numeric116 unique values
0 missing
V221numeric15 unique values
0 missing
V222numeric22 unique values
0 missing
V223numeric34 unique values
0 missing
V224numeric47 unique values
0 missing
V225numeric41 unique values
0 missing
V226numeric50 unique values
0 missing
V227numeric65 unique values
0 missing
V228numeric76 unique values
0 missing
V229numeric91 unique values
0 missing
V230numeric97 unique values
0 missing
V231numeric114 unique values
0 missing
V232numeric126 unique values
0 missing
V233numeric126 unique values
0 missing
V234numeric126 unique values
0 missing
V235numeric126 unique values
0 missing
V236numeric126 unique values
0 missing
V237numeric126 unique values
0 missing
V238numeric126 unique values
0 missing
V239numeric126 unique values
0 missing
V240numeric126 unique values
0 missing
V241numeric126 unique values
0 missing
V242numeric126 unique values
0 missing
V243numeric126 unique values
0 missing
V244numeric126 unique values
0 missing
V245numeric126 unique values
0 missing
V246numeric126 unique values
0 missing
V247numeric126 unique values
0 missing
V248numeric126 unique values
0 missing
V249numeric126 unique values
0 missing
V250numeric126 unique values
0 missing
V251numeric23 unique values
0 missing
V252numeric43 unique values
0 missing
V253numeric62 unique values
0 missing
V254numeric108 unique values
0 missing
V255numeric113 unique values
0 missing
V256numeric123 unique values
0 missing

107 properties

126
Number of instances (rows) of the dataset.
311
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
310
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.25
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.35
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.42
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
42
Number of instances belonging to the least frequent class.
0.32
Percentage of nominal attributes.
5.73
Third quartile of skewness among attributes of the numeric type.
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
27.37
Mean kurtosis among attributes of the numeric type.
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
440.86
Third quartile of standard deviation of attributes of the numeric type.
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.25
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-137218838.85
Mean of means among attributes of the numeric type.
0.4
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.9
First quartile of kurtosis among attributes of the numeric type.
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.25
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.35
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.42
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.27
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0
First quartile of means among attributes of the numeric type.
0.25
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.4
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.25
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
-0.1
First quartile of skewness among attributes of the numeric type.
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.25
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.42
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
2.04
Mean skewness among attributes of the numeric type.
0.03
First quartile of standard deviation of attributes of the numeric type.
0.25
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.43
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.25
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
66.67
Percentage of instances belonging to the most frequent class.
121542465.02
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
7.47
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.4
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.92
Entropy of the target attribute values.
0.47
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
84
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.07
Second quartile (Median) of means among attributes of the numeric type.
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.72
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-0.59
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.25
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.29
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
122.84
Maximum kurtosis among attributes of the numeric type.
-15755088925.87
Minimum of means among attributes of the numeric type.
1.23
Second quartile (Median) of skewness among attributes of the numeric type.
0.4
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.39
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
18570761.39
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
3.05
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
2.47
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
0.32
Percentage of binary attributes.
Third quartile of entropy among attributes.
0.35
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
-11.03
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
50.01
Third quartile of kurtosis among attributes of the numeric type.
0.34
Average class difference between consecutive instances.
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
10.84
Maximum skewness among attributes of the numeric type.
0
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
50.18
Third quartile of means among attributes of the numeric type.
0.7
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.25
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
14132861569.78
Maximum standard deviation of attributes of the numeric type.
33.33
Percentage of instances belonging to the least frequent class.
99.68
Percentage of numeric attributes.

13 tasks

131 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
31 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task