Data
climate-model-simulation-crashes

climate-model-simulation-crashes

active ARFF Publicly available Visibility: public Uploaded 21-05-2015 by Rafael Gomes Mantovani
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Data Science Environment OpenML100 study_123 study_135 study_14 study_34 study_50 study_7 Technology
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: D. Lucas, R. Klein, J. Tannahill, D. Ivanova, S. Brandon, D. Domyancic, Y. Zhang. Source: [UCI](https://archive.ics.uci.edu/ml/datasets/climate+model+simulation+crashes) Please Cite: Lucas, D. D., Klein, R., Tannahill, J., Ivanova, D., Brandon, S., Domyancic, D., and Zhang, Y.: Failure analysis of parameter-induced simulation crashes in climate models, Geosci. Model Dev. Discuss., 6, 585-623, [Web Link](http://www.geosci-model-dev-discuss.net/6/585/2013/gmdd-6-585-2013.html), 2013. Source: D. Lucas (ddlucas .at. alum.mit.edu), Lawrence Livermore National Laboratory; R. Klein (rklein .at. astron.berkeley.edu), Lawrence Livermore National Laboratory & U.C. Berkeley; J. Tannahill (tannahill1 .at. llnl.gov), Lawrence Livermore National Laboratory; D. Ivanova (ivanova2 .at. llnl.gov), Lawrence Livermore National Laboratory; S. Brandon (brandon1 .at. llnl.gov), Lawrence Livermore National Laboratory; D. Domyancic (domyancic1 .at. llnl.gov), Lawrence Livermore National Laboratory; Y. Zhang (zhang24 .at. llnl.gov), Lawrence Livermore National Laboratory . This data was constructed using LLNL's UQ Pipeline, was created under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, was funded by LLNL's Uncertainty Quantification Strategic Initiative Laboratory Directed Research and Development Project under tracking code 10-SI-013, and is released under UCRL number LLNL-MISC-633994. Data Set Information: This dataset contains records of simulation crashes encountered during climate model uncertainty quantification (UQ) ensembles. Ensemble members were constructed using a Latin hypercube method in LLNL's UQ Pipeline software system to sample the uncertainties of 18 model parameters within the Parallel Ocean Program (POP2) component of the Community Climate System Model (CCSM4). Three separate Latin hypercube ensembles were conducted, each containing 180 ensemble members. 46 out of the 540 simulations failed for numerical reasons at combinations of parameter values. The goal is to use classification to predict simulation outcomes (fail or succeed) from input parameter values, and to use sensitivity analysis and feature selection to determine the causes of simulation crashes. Further details about the data and methods are given in the publication 'Failure Analysis of Parameter-Induced Simulation Crashes in Climate Models,' Geoscientific Model Development [(Web Link)](doi:10.5194/gmdd-6-585-2013). Attribute Information: The goal is to predict climate model simulation outcomes (column 21, fail or succeed) given scaled values of climate model input parameters (columns 3-20). - Column 1: Latin hypercube study ID (study 1 to study 3) - Column 2: simulation ID (run 1 to run 180) - Columns 3-20: values of 18 climate model parameters scaled in the interval [0, 1] - Column 21: simulation outcome (0 = failure, 1 = success) Relevant Papers: Lucas, D. D., Klein, R., Tannahill, J., Ivanova, D., Brandon, S., Domyancic, D., and Zhang, Y.: Failure analysis of parameter-induced simulation crashes in climate models, Geosci. Model Dev. Discuss., 6, 585-623, [Web Link](http://www.geosci-model-dev-discuss.net/6/585/2013/gmdd-6-585-2013.html), 2013.

21 features

Class (target)nominal2 unique values
0 missing
V1numeric3 unique values
0 missing
V2numeric180 unique values
0 missing
V3numeric540 unique values
0 missing
V4numeric540 unique values
0 missing
V5numeric540 unique values
0 missing
V6numeric540 unique values
0 missing
V7numeric540 unique values
0 missing
V8numeric540 unique values
0 missing
V9numeric540 unique values
0 missing
V10numeric540 unique values
0 missing
V11numeric540 unique values
0 missing
V12numeric540 unique values
0 missing
V13numeric540 unique values
0 missing
V14numeric540 unique values
0 missing
V15numeric540 unique values
0 missing
V16numeric539 unique values
0 missing
V17numeric540 unique values
0 missing
V18numeric539 unique values
0 missing
V19numeric540 unique values
0 missing
V20numeric540 unique values
0 missing

107 properties

540
Number of instances (rows) of the dataset.
21
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
20
Number of numeric attributes.
1
Number of nominal attributes.
-0
Second quartile (Median) of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
270.5
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.29
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.66
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.04
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
4.76
Percentage of binary attributes.
Third quartile of entropy among attributes.
0.09
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
-0
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
-1.2
Third quartile of kurtosis among attributes of the numeric type.
0.84
Average class difference between consecutive instances.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0
Maximum skewness among attributes of the numeric type.
0.29
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
0.5
Third quartile of means among attributes of the numeric type.
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.71
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.09
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
156.03
Maximum standard deviation of attributes of the numeric type.
8.52
Percentage of instances belonging to the least frequent class.
95.24
Percentage of numeric attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.09
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
46
Number of instances belonging to the least frequent class.
4.76
Percentage of nominal attributes.
0
Third quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
-1.22
Mean kurtosis among attributes of the numeric type.
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
-1.2
First quartile of kurtosis among attributes of the numeric type.
0.29
Third quartile of standard deviation of attributes of the numeric type.
0.8
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.09
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
18.58
Mean of means among attributes of the numeric type.
0.11
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.5
First quartile of means among attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.12
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.09
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of mutual information between the nominal attributes and the target attribute.
0.09
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.2
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.02
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
-0
First quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.09
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
0.29
First quartile of standard deviation of attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.13
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0
Mean skewness among attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.09
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.14
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
91.48
Percentage of instances belonging to the most frequent class.
10.69
Mean standard deviation of attributes of the numeric type.
-1.2
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.42
Entropy of the target attribute values.
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
494
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
0.5
Second quartile (Median) of means among attributes of the numeric type.
0.5
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.75
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.5
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.09
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.09
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
-1.2
Maximum kurtosis among attributes of the numeric type.
0.5
Minimum of means among attributes of the numeric type.

25 tasks

99429 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
60811 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
1 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: Class
45 runs - estimation_procedure: 10-fold Learning Curve - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
1303 runs - target_feature: Class
1301 runs - target_feature: Class
Define a new task