{ "data_id": "1464", "name": "blood-transfusion-service-center", "exact_name": "blood-transfusion-service-center", "version": 1, "version_label": null, "description": "**Author**: Prof. I-Cheng Yeh \n**Source**: [UCI](https:\/\/archive.ics.uci.edu\/ml\/datasets\/Blood+Transfusion+Service+Center) \n**Please cite**: Yeh, I-Cheng, Yang, King-Jang, and Ting, Tao-Ming, \"Knowledge discovery on RFM model using Bernoulli sequence\", Expert Systems with Applications, 2008. \n\n**Blood Transfusion Service Center Data Set** \nData taken from the Blood Transfusion Service Center in Hsin-Chu City in Taiwan -- this is a classification problem.\n\nTo demonstrate the RFMTC marketing model (a modified version of RFM), this study adopted the donor database of Blood Transfusion Service Center in Hsin-Chu City in Taiwan. The center passes their blood transfusion service bus to one university in Hsin-Chu City to gather blood donated about every three months. To build an FRMTC model, we selected 748 donors at random from the donor database. \n\n### Attribute Information \n* V1: Recency - months since last donation\n* V2: Frequency - total number of donation\n* V3: Monetary - total blood donated in c.c.\n* V4: Time - months since first donation), and a binary variable representing whether he\/she donated blood in March 2007 (1 stand for donating blood; 0 stands for not donating blood).\n\nThe target attribute is a binary variable representing whether he\/she donated blood in March 2007 (2 stands for donating blood; 1 stands for not donating blood).", "format": "ARFF", "uploader": "Rafael Gomes Mantovani", "uploader_id": 64, "visibility": "public", "creator": " ", "contributor": null, "date": "2015-05-21 22:49:48", "update_comment": null, "last_update": "2015-11-09 21:02:59", "licence": "Public", "status": "active", "error_message": null, "url": "https:\/\/www.openml.org\/data\/download\/1586225\/php0iVrYT", "default_target_attribute": "Class", "row_id_attribute": null, "ignore_attribute": null, "runs": 468690, "suggest": { "input": [ "blood-transfusion-service-center", "Data taken from the Blood Transfusion Service Center in Hsin-Chu City in Taiwan -- this is a classification problem. To demonstrate the RFMTC marketing model (a modified version of RFM), this study adopted the donor database of Blood Transfusion Service Center in Hsin-Chu City in Taiwan. The center passes their blood transfusion service bus to one university in Hsin-Chu City to gather blood donated about every three months. To build an FRMTC model, we selected 748 donors at random from the donor " ], "weight": 5 }, "qualities": { "NumberOfInstances": 748, "NumberOfFeatures": 5, "NumberOfClasses": 2, "NumberOfMissingValues": 0, "NumberOfInstancesWithMissingValues": 0, "NumberOfNumericFeatures": 4, "NumberOfSymbolicFeatures": 1, "RandomTreeDepth3Kappa": 0.13567374666781304, "J48.001.AUC": 0.6960230632761679, "MeanNoiseToSignalRatio": null, "NumberOfBinaryFeatures": 1, "Quartile1MutualInformation": null, "REPTreeDepth1ErrRate": 0.23796791443850268, "CfsSubsetEval_NaiveBayesKappa": 0.02063078703703703, "StdvNominalAttDistinctValues": 0, "J48.001.ErrRate": 0.22459893048128343, "MeanNominalAttDistinctValues": 2, "Quartile1SkewnessOfNumericAtts": 1.0322036011463176, "REPTreeDepth1Kappa": 0.17490456596103332, "CfsSubsetEval_kNN1NAUC": 0.635053222945003, "kNN1NAUC": 0.6044253893159865, "J48.001.Kappa": 0.32603938730853393, "MeanSkewnessOfNumericAtts": 2.263111192925173, "Quartile1StdDevOfNumericAtts": 6.403329251142325, "REPTreeDepth2AUC": 0.7011186674551547, "CfsSubsetEval_kNN1NErrRate": 0.24197860962566844, "kNN1NErrRate": 0.28609625668449196, "MajorityClassPercentage": 76.20320855614973, "MeanStdDevOfNumericAtts": 374.5345494748768, "Quartile2AttributeEntropy": null, "REPTreeDepth2ErrRate": 0.23796791443850268, "CfsSubsetEval_kNN1NKappa": 0.02063078703703703, "kNN1NKappa": 0.1486618729523889, "MajorityClassSize": 570, "MinAttributeEntropy": null, "Quartile2KurtosisOfNumericAtts": 12.633750101130904, "REPTreeDepth2Kappa": 0.17490456596103332, "ClassEntropy": 0.7916446298452329, "MaxAttributeEntropy": null, "MinKurtosisOfNumericAtts": -0.24563117940242574, "Quartile2MeansOfNumericAtts": 21.89438502673798, "REPTreeDepth3AUC": 0.7011186674551547, "DecisionStumpAUC": 0.6777646363098758, "MaxKurtosisOfNumericAtts": 15.876151978542005, "MinMeansOfNumericAtts": 5.514705882352952, "Quartile2MutualInformation": null, "REPTreeDepth3ErrRate": 0.23796791443850268, "DecisionStumpErrRate": 0.23796791443850268, "MaxMeansOfNumericAtts": 1378.6764705882335, "MinMutualInformation": null, "Quartile2SkewnessOfNumericAtts": 2.5458645034443492, "REPTreeDepth3Kappa": 0.17490456596103332, "DecisionStumpKappa": 0, "Dimensionality": 0.0066844919786096255, "MaxMutualInformation": null, "MinNominalAttDistinctValues": 2, "PercentageOfBinaryFeatures": 20, "Quartile2StdDevOfNumericAtts": 16.23605500195668, "RandomTreeDepth1AUC": 0.5678050463236743, "EquivalentNumberOfAtts": null, "MaxNominalAttDistinctValues": 2, "MinSkewnessOfNumericAtts": 0.7494502906271294, "PercentageOfInstancesWithMissingValues": 0, "Quartile3AttributeEntropy": null, "RandomTreeDepth1ErrRate": 0.2874331550802139, "J48.00001.AUC": 0.6960230632761679, "MaxSkewnessOfNumericAtts": 3.2112654741848643, "MinStdDevOfNumericAtts": 5.8393071230900295, "PercentageOfMissingValues": 0, "Quartile3KurtosisOfNumericAtts": 15.876151978541927, "AutoCorrelation": 0.7309236947791165, "RandomTreeDepth1Kappa": 0.13567374666781304, "J48.00001.ErrRate": 0.22459893048128343, "MaxStdDevOfNumericAtts": 1459.826780772504, "MinorityClassPercentage": 23.796791443850267, "PercentageOfNumericFeatures": 80, "Quartile3MeansOfNumericAtts": 1042.5778743315495, "CfsSubsetEval_DecisionStumpAUC": 0.635053222945003, "RandomTreeDepth2AUC": 0.5678050463236743, "RandomTreeDepth2ErrRate": 0.2874331550802139, "J48.00001.Kappa": 0.32603938730853393, "MeanAttributeEntropy": null, "MinorityClassSize": 178, "PercentageOfSymbolicFeatures": 20, "Quartile3MutualInformation": null, "CfsSubsetEval_DecisionStumpErrRate": 0.24197860962566844, "RandomTreeDepth2Kappa": 0.13567374666781304, "J48.0001.AUC": 0.6960230632761679, "MeanKurtosisOfNumericAtts": 10.224505250350347, "NaiveBayesAUC": 0.6667800118273212, "Quartile1AttributeEntropy": null, "Quartile3SkewnessOfNumericAtts": 3.2112654741848523, "CfsSubsetEval_DecisionStumpKappa": 0.02063078703703703, "RandomTreeDepth3AUC": 0.5678050463236743, "J48.0001.ErrRate": 0.22459893048128343, "MeanMeansOfNumericAtts": 356.99498663101565, "NaiveBayesErrRate": 0.2446524064171123, "Quartile1KurtosisOfNumericAtts": 2.1636136713782106, "Quartile3StdDevOfNumericAtts": 1100.9642641715316, "CfsSubsetEval_NaiveBayesAUC": 0.635053222945003, "RandomTreeDepth3ErrRate": 0.2874331550802139, "J48.0001.Kappa": 0.32603938730853393, "MeanMutualInformation": null, "NaiveBayesKappa": 0.14966206142530555, "Quartile1MeansOfNumericAtts": 6.512700534759367, "REPTreeDepth1AUC": 0.7011186674551547, "CfsSubsetEval_NaiveBayesErrRate": 0.24197860962566844 }, "tags": [ { "tag": "Chemistry", "uploader": "38960" }, { "tag": "Life Science", "uploader": "38960" }, { "tag": "OpenML-CC18", "uploader": "1" }, { "tag": "OpenML100", "uploader": "348" }, { "tag": "study_123", "uploader": "3886" }, { "tag": "study_135", "uploader": "5824" }, { "tag": "study_14", "uploader": "64" }, { "tag": "study_218", "uploader": "869" }, { "tag": "study_34", "uploader": "1" }, { "tag": "study_50", "uploader": "64" }, { "tag": "study_52", "uploader": "64" }, { "tag": "study_7", "uploader": "64" }, { "tag": "study_98", "uploader": "1935" }, { "tag": "study_99", "uploader": "1" }, { "tag": "uci", "uploader": "2" }, { "tag": "study_225", "uploader": "0" }, { "tag": "study_236", "uploader": "0" }, { "tag": "study_271", "uploader": "0" }, { "tag": "study_240", "uploader": "0" }, { "tag": "study_253", "uploader": "0" }, { "tag": "study_338", "uploader": "0" }, { "tag": "study_339", "uploader": "0" }, { "tag": "study_342", "uploader": "0" }, { "tag": "study_343", "uploader": "0" }, { "tag": "study_275", "uploader": "0" } ], "features": [ { "name": "Class", "index": "4", "type": "nominal", "distinct": "2", "missing": "0", "target": "1", "distr": [ [ "1", "2" ], [ [ "570", "0" ], [ "0", "178" ] ] ] }, { "name": "V1", "index": "0", "type": "numeric", "distinct": "31", "missing": "0", "min": "0", "max": "74", "mean": "10", "stdev": "8" }, { "name": "V2", "index": "1", "type": "numeric", "distinct": "33", "missing": "0", "min": "1", "max": "50", "mean": "6", "stdev": "6" }, { "name": "V3", "index": "2", "type": "numeric", "distinct": "33", "missing": "0", "min": "250", "max": "12500", "mean": "1379", "stdev": "1460" }, { "name": "V4", "index": "3", "type": "numeric", "distinct": "78", "missing": "0", "min": "2", "max": "98", "mean": "34", "stdev": "24" } ], "nr_of_issues": 0, "nr_of_downvotes": 0, "nr_of_likes": 6, "nr_of_downloads": 101, "total_downloads": 126, "reach": 107, "reuse": 33, "impact_of_reuse": 0, "reach_of_reuse": 27, "impact": 46 }