Data
a6a

a6a

active Sparse_ARFF Publicly available Visibility: public Uploaded 27-04-2015 by Farooq Zuberi
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Ronny Kohavi","Barry Becker libSVM","AAD group Source: [original](http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html) - Date unknown Please cite: http://archive.ics.uci.edu/ml/datasets/Adult #Dataset from the LIBSVM data repository. Preprocessing: The original Adult data set has 14 features, among which six are continuous and eight are categorical. In this data set, continuous features are discretized into quantiles, and each quantile is represented by a binary feature. Also, a categorical feature with m categories is converted to m binary features. Details on how each feature is converted can be found in the beginning of each file from this page. http://research.microsoft.com/en-us/um/people/jplatt/adult.zip

124 features

class (target)numeric2 unique values
0 missing
att_1numeric2 unique values
0 missing
att_2numeric2 unique values
0 missing
att_3numeric2 unique values
0 missing
att_4numeric2 unique values
0 missing
att_5numeric2 unique values
0 missing
att_6numeric2 unique values
0 missing
att_7numeric2 unique values
0 missing
att_8numeric2 unique values
0 missing
att_9numeric2 unique values
0 missing
att_10numeric2 unique values
0 missing
att_11numeric2 unique values
0 missing
att_12numeric2 unique values
0 missing
att_13numeric2 unique values
0 missing
att_14numeric2 unique values
0 missing
att_15numeric2 unique values
0 missing
att_16numeric2 unique values
0 missing
att_17numeric2 unique values
0 missing
att_18numeric2 unique values
0 missing
att_19numeric2 unique values
0 missing
att_20numeric2 unique values
0 missing
att_21numeric2 unique values
0 missing
att_22numeric2 unique values
0 missing
att_23numeric2 unique values
0 missing
att_24numeric2 unique values
0 missing
att_25numeric2 unique values
0 missing
att_26numeric2 unique values
0 missing
att_27numeric2 unique values
0 missing
att_28numeric2 unique values
0 missing
att_29numeric2 unique values
0 missing
att_30numeric2 unique values
0 missing
att_31numeric2 unique values
0 missing
att_32numeric2 unique values
0 missing
att_33numeric2 unique values
0 missing
att_34numeric2 unique values
0 missing
att_35numeric2 unique values
0 missing
att_36numeric2 unique values
0 missing
att_37numeric2 unique values
0 missing
att_38numeric2 unique values
0 missing
att_39numeric2 unique values
0 missing
att_40numeric2 unique values
0 missing
att_41numeric2 unique values
0 missing
att_42numeric2 unique values
0 missing
att_43numeric2 unique values
0 missing
att_44numeric2 unique values
0 missing
att_45numeric2 unique values
0 missing
att_46numeric2 unique values
0 missing
att_47numeric2 unique values
0 missing
att_48numeric2 unique values
0 missing
att_49numeric2 unique values
0 missing
att_50numeric2 unique values
0 missing
att_51numeric2 unique values
0 missing
att_52numeric2 unique values
0 missing
att_53numeric2 unique values
0 missing
att_54numeric2 unique values
0 missing
att_55numeric2 unique values
0 missing
att_56numeric2 unique values
0 missing
att_57numeric2 unique values
0 missing
att_58numeric2 unique values
0 missing
att_59numeric2 unique values
0 missing
att_60numeric2 unique values
0 missing
att_61numeric2 unique values
0 missing
att_62numeric2 unique values
0 missing
att_63numeric2 unique values
0 missing
att_64numeric2 unique values
0 missing
att_65numeric2 unique values
0 missing
att_66numeric2 unique values
0 missing
att_67numeric2 unique values
0 missing
att_68numeric2 unique values
0 missing
att_69numeric2 unique values
0 missing
att_70numeric2 unique values
0 missing
att_71numeric2 unique values
0 missing
att_72numeric2 unique values
0 missing
att_73numeric2 unique values
0 missing
att_74numeric2 unique values
0 missing
att_75numeric2 unique values
0 missing
att_76numeric2 unique values
0 missing
att_77numeric2 unique values
0 missing
att_78numeric2 unique values
0 missing
att_79numeric2 unique values
0 missing
att_80numeric2 unique values
0 missing
att_81numeric2 unique values
0 missing
att_82numeric2 unique values
0 missing
att_83numeric2 unique values
0 missing
att_84numeric2 unique values
0 missing
att_85numeric2 unique values
0 missing
att_86numeric2 unique values
0 missing
att_87numeric2 unique values
0 missing
att_88numeric2 unique values
0 missing
att_89numeric2 unique values
0 missing
att_90numeric2 unique values
0 missing
att_91numeric2 unique values
0 missing
att_92numeric2 unique values
0 missing
att_93numeric2 unique values
0 missing
att_94numeric2 unique values
0 missing
att_95numeric2 unique values
0 missing
att_96numeric2 unique values
0 missing
att_97numeric2 unique values
0 missing
att_98numeric2 unique values
0 missing
att_99numeric2 unique values
0 missing
att_100numeric2 unique values
0 missing
att_101numeric2 unique values
0 missing
att_102numeric2 unique values
0 missing
att_103numeric2 unique values
0 missing
att_104numeric2 unique values
0 missing
att_105numeric2 unique values
0 missing
att_106numeric2 unique values
0 missing
att_107numeric2 unique values
0 missing
att_108numeric2 unique values
0 missing
att_109numeric2 unique values
0 missing
att_110numeric2 unique values
0 missing
att_111numeric2 unique values
0 missing
att_112numeric2 unique values
0 missing
att_113numeric2 unique values
0 missing
att_114numeric2 unique values
0 missing
att_115numeric2 unique values
0 missing
att_116numeric2 unique values
0 missing
att_117numeric2 unique values
0 missing
att_118numeric2 unique values
0 missing
att_119numeric2 unique values
0 missing
att_120numeric2 unique values
0 missing
att_121numeric2 unique values
0 missing
att_122numeric2 unique values
0 missing
att_123numeric2 unique values
0 missing

107 properties

32561
Number of instances (rows) of the dataset.
124
Number of attributes (columns) of the dataset.
0
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
124
Number of numeric attributes.
0
Number of nominal attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
0.95
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
5.46
Second quartile (Median) of skewness among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.17
Second quartile (Median) of standard deviation of attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
The maximum number of distinct values among attributes of the nominal type.
-4.3
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
180.45
Maximum skewness among attributes of the numeric type.
0.01
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
475.85
Third quartile of kurtosis among attributes of the numeric type.
0.27
Average class difference between consecutive instances.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.86
Maximum standard deviation of attributes of the numeric type.
Percentage of instances belonging to the least frequent class.
100
Percentage of numeric attributes.
0.15
Third quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
Number of instances belonging to the least frequent class.
0
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
680.03
Mean kurtosis among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
21.86
Third quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.11
Mean of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
2.86
First quartile of kurtosis among attributes of the numeric type.
0.34
Third quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
First quartile of means among attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Standard deviation of the number of distinct values among attributes of the nominal type.
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Average number of distinct values among the attributes of the nominal type.
1.83
First quartile of skewness among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
14.6
Mean skewness among attributes of the numeric type.
0.05
First quartile of standard deviation of attributes of the numeric type.
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
Percentage of instances belonging to the most frequent class.
0.2
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Entropy of the target attribute values.
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
27.81
Second quartile (Median) of kurtosis among attributes of the numeric type.
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.98
Minimum kurtosis among attributes of the numeric type.
0.03
Second quartile (Median) of means among attributes of the numeric type.
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
32561
Maximum kurtosis among attributes of the numeric type.
-0.52
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.

16 tasks

0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: Custom 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: Test on Training Data - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task