Data
BNG(autos,1000,10)

BNG(autos,1000,10)

active ARFF public domain Visibility: public Uploaded 23-02-2015 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • artificial Automobiles BNG Data Engineering Manufacturing Statistics
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

26 features

symboling (target)nominal7 unique values
0 missing
normalized-lossesnumeric994725 unique values
0 missing
makenominal22 unique values
0 missing
fuel-typenominal2 unique values
0 missing
aspirationnominal2 unique values
0 missing
num-of-doorsnominal2 unique values
0 missing
body-stylenominal5 unique values
0 missing
drive-wheelsnominal3 unique values
0 missing
engine-locationnominal2 unique values
0 missing
wheel-basenumeric967822 unique values
0 missing
lengthnumeric986484 unique values
0 missing
widthnumeric926655 unique values
0 missing
heightnumeric942897 unique values
0 missing
curb-weightnumeric999693 unique values
0 missing
engine-typenominal7 unique values
0 missing
num-of-cylindersnominal7 unique values
0 missing
engine-sizenumeric994493 unique values
0 missing
fuel-systemnominal8 unique values
0 missing
borenumeric622912 unique values
0 missing
strokenumeric609168 unique values
0 missing
compression-rationumeric682082 unique values
0 missing
horsepowernumeric994972 unique values
0 missing
peak-rpmnumeric999454 unique values
0 missing
city-mpgnumeric973124 unique values
0 missing
highway-mpgnumeric976056 unique values
0 missing
pricenumeric999968 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
26
Number of attributes (columns) of the dataset.
7
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
15
Number of numeric attributes.
11
Number of nominal attributes.
0.66
Second quartile (Median) of skewness among attributes of the numeric type.
0.1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.05
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
13587.96
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
6.58
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
0.01
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
15.38
Percentage of binary attributes.
2.77
Third quartile of entropy among attributes.
0.73
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
397.23
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
22
The maximum number of distinct values among attributes of the nominal type.
-0.59
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
0.93
Third quartile of kurtosis among attributes of the numeric type.
0.23
Average class difference between consecutive instances.
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2.55
Maximum skewness among attributes of the numeric type.
0.27
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
174.44
Third quartile of means among attributes of the numeric type.
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.7
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
8060.93
Maximum standard deviation of attributes of the numeric type.
0.24
Percentage of instances belonging to the least frequent class.
57.69
Percentage of numeric attributes.
0.01
Third quartile of mutual information between the nominal attributes and the target attribute.
0.71
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.73
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.95
Average entropy of the attributes.
2441
Number of instances belonging to the least frequent class.
42.31
Percentage of nominal attributes.
1.18
Third quartile of skewness among attributes of the numeric type.
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.81
Mean kurtosis among attributes of the numeric type.
0.61
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.87
First quartile of entropy among attributes.
-0.31
First quartile of kurtosis among attributes of the numeric type.
40.82
Third quartile of standard deviation of attributes of the numeric type.
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.7
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
1472.93
Mean of means among attributes of the numeric type.
0.64
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
24.22
First quartile of means among attributes of the numeric type.
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.71
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.73
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.01
Average mutual information between the nominal attributes and the target attribute.
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.66
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.55
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
335.11
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
4
Number of binary attributes.
0.13
First quartile of skewness among attributes of the numeric type.
0.1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
5.8
Standard deviation of the number of distinct values among attributes of the nominal type.
0.7
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
6.09
Average number of distinct values among the attributes of the nominal type.
2.46
First quartile of standard deviation of attributes of the numeric type.
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.71
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.54
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.09
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.75
Mean skewness among attributes of the numeric type.
1.85
Second quartile (Median) of entropy among attributes.
0.66
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.06
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.72
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
32.36
Percentage of instances belonging to the most frequent class.
619.24
Mean standard deviation of attributes of the numeric type.
0.14
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.1
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
2.3
Entropy of the target attribute values.
0.07
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
323554
Number of instances belonging to the most frequent class.
0.51
Minimal entropy among attributes.
98.84
Second quartile (Median) of means among attributes of the numeric type.
0.59
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.53
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
4.44
Maximum entropy among attributes.
-0.98
Minimum kurtosis among attributes of the numeric type.
0.01
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.66
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.66
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
7.38
Maximum kurtosis among attributes of the numeric type.
3.25
Minimum of means among attributes of the numeric type.

13 tasks

0 runs - estimation_procedure: 33% Holdout set - target_feature: symboling
29 runs - estimation_procedure: Interleaved Test then Train - target_feature: symboling
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task