Data
BNG(sonar,nominal,1000000)

BNG(sonar,nominal,1000000)

active ARFF Publicly available Visibility: public Uploaded 09-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

61 features

Class (target)nominal2 unique values
0 missing
attribute_1nominal3 unique values
0 missing
attribute_2nominal3 unique values
0 missing
attribute_3nominal3 unique values
0 missing
attribute_4nominal3 unique values
0 missing
attribute_5nominal3 unique values
0 missing
attribute_6nominal3 unique values
0 missing
attribute_7nominal3 unique values
0 missing
attribute_8nominal3 unique values
0 missing
attribute_9nominal3 unique values
0 missing
attribute_10nominal3 unique values
0 missing
attribute_11nominal3 unique values
0 missing
attribute_12nominal3 unique values
0 missing
attribute_13nominal3 unique values
0 missing
attribute_14nominal3 unique values
0 missing
attribute_15nominal3 unique values
0 missing
attribute_16nominal3 unique values
0 missing
attribute_17nominal3 unique values
0 missing
attribute_18nominal3 unique values
0 missing
attribute_19nominal3 unique values
0 missing
attribute_20nominal3 unique values
0 missing
attribute_21nominal3 unique values
0 missing
attribute_22nominal3 unique values
0 missing
attribute_23nominal3 unique values
0 missing
attribute_24nominal3 unique values
0 missing
attribute_25nominal3 unique values
0 missing
attribute_26nominal3 unique values
0 missing
attribute_27nominal3 unique values
0 missing
attribute_28nominal3 unique values
0 missing
attribute_29nominal3 unique values
0 missing
attribute_30nominal3 unique values
0 missing
attribute_31nominal3 unique values
0 missing
attribute_32nominal3 unique values
0 missing
attribute_33nominal3 unique values
0 missing
attribute_34nominal3 unique values
0 missing
attribute_35nominal3 unique values
0 missing
attribute_36nominal3 unique values
0 missing
attribute_37nominal3 unique values
0 missing
attribute_38nominal3 unique values
0 missing
attribute_39nominal3 unique values
0 missing
attribute_40nominal3 unique values
0 missing
attribute_41nominal3 unique values
0 missing
attribute_42nominal3 unique values
0 missing
attribute_43nominal3 unique values
0 missing
attribute_44nominal3 unique values
0 missing
attribute_45nominal3 unique values
0 missing
attribute_46nominal3 unique values
0 missing
attribute_47nominal3 unique values
0 missing
attribute_48nominal3 unique values
0 missing
attribute_49nominal3 unique values
0 missing
attribute_50nominal3 unique values
0 missing
attribute_51nominal3 unique values
0 missing
attribute_52nominal3 unique values
0 missing
attribute_53nominal3 unique values
0 missing
attribute_54nominal3 unique values
0 missing
attribute_55nominal3 unique values
0 missing
attribute_56nominal3 unique values
0 missing
attribute_57nominal3 unique values
0 missing
attribute_58nominal3 unique values
0 missing
attribute_59nominal3 unique values
0 missing
attribute_60nominal3 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
61
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
61
Number of nominal attributes.
Second quartile (Median) of skewness among attributes of the numeric type.
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
0.08
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
1.64
Percentage of binary attributes.
1.43
Third quartile of entropy among attributes.
0.2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
44.96
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3
The maximum number of distinct values among attributes of the nominal type.
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of kurtosis among attributes of the numeric type.
0.5
Average class difference between consecutive instances.
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum skewness among attributes of the numeric type.
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
Third quartile of means among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum standard deviation of attributes of the numeric type.
46.64
Percentage of instances belonging to the least frequent class.
0
Percentage of numeric attributes.
0.03
Third quartile of mutual information between the nominal attributes and the target attribute.
0.18
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.74
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.18
Average entropy of the attributes.
466444
Number of instances belonging to the least frequent class.
100
Percentage of nominal attributes.
Third quartile of skewness among attributes of the numeric type.
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean kurtosis among attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
1
First quartile of entropy among attributes.
Third quartile of standard deviation of attributes of the numeric type.
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.81
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean of means among attributes of the numeric type.
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of kurtosis among attributes of the numeric type.
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.18
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.2
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.74
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.02
Average mutual information between the nominal attributes and the target attribute.
0.59
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of means among attributes of the numeric type.
0.01
First quartile of mutual information between the nominal attributes and the target attribute.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
52.26
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
First quartile of skewness among attributes of the numeric type.
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.88
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.13
Standard deviation of the number of distinct values among attributes of the nominal type.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2.98
Average number of distinct values among the attributes of the nominal type.
First quartile of standard deviation of attributes of the numeric type.
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.18
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.9
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.74
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean skewness among attributes of the numeric type.
1.23
Second quartile (Median) of entropy among attributes.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.14
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
53.36
Percentage of instances belonging to the most frequent class.
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
1
Entropy of the target attribute values.
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
533556
Number of instances belonging to the most frequent class.
0.41
Minimal entropy among attributes.
Second quartile (Median) of means among attributes of the numeric type.
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.67
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
1.58
Maximum entropy among attributes.
Minimum kurtosis among attributes of the numeric type.
0.02
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.33
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum kurtosis among attributes of the numeric type.
Minimum of means among attributes of the numeric type.

18 tasks

4 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: Class
0 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: Class
0 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: Class
46 runs - estimation_procedure: Interleaved Test then Train - target_feature: Class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task