Data
BNG(credit-a,nominal,1000000)

BNG(credit-a,nominal,1000000)

active ARFF Publicly available Visibility: public Uploaded 08-04-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • artificial BNG Data Science Finance study_69
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

16 features

class (target)nominal2 unique values
0 missing
A1nominal2 unique values
0 missing
A2nominal3 unique values
0 missing
A3nominal3 unique values
0 missing
A4nominal4 unique values
0 missing
A5nominal3 unique values
0 missing
A6nominal14 unique values
0 missing
A7nominal9 unique values
0 missing
A8nominal3 unique values
0 missing
A9nominal2 unique values
0 missing
A10nominal2 unique values
0 missing
A11nominal3 unique values
0 missing
A12nominal2 unique values
0 missing
A13nominal3 unique values
0 missing
A14nominal3 unique values
0 missing
A15nominal3 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
16
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
0
Number of numeric attributes.
16
Number of nominal attributes.
Maximum standard deviation of attributes of the numeric type.
44.51
Percentage of instances belonging to the least frequent class.
0
Percentage of numeric attributes.
Third quartile of means among attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.11
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
0.95
Average entropy of the attributes.
445102
Number of instances belonging to the least frequent class.
100
Percentage of nominal attributes.
0.04
Third quartile of mutual information between the nominal attributes and the target attribute.
0.13
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.12
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Mean kurtosis among attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.33
First quartile of entropy among attributes.
Third quartile of skewness among attributes of the numeric type.
0.74
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.76
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Mean of means among attributes of the numeric type.
0.13
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of kurtosis among attributes of the numeric type.
Third quartile of standard deviation of attributes of the numeric type.
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.11
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.06
Average mutual information between the nominal attributes and the target attribute.
0.74
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of means among attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.13
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.12
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
16.15
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
5
Number of binary attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.12
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.74
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.76
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
3.81
Average number of distinct values among the attributes of the nominal type.
First quartile of skewness among attributes of the numeric type.
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.91
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
3.19
Standard deviation of the number of distinct values among attributes of the nominal type.
0.11
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean skewness among attributes of the numeric type.
First quartile of standard deviation of attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.13
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.94
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
Mean standard deviation of attributes of the numeric type.
0.84
Second quartile (Median) of entropy among attributes.
0.12
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.74
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.12
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
55.49
Percentage of instances belonging to the most frequent class.
0.07
Minimal entropy among attributes.
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.99
Entropy of the target attribute values.
0.76
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
554898
Number of instances belonging to the most frequent class.
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of means among attributes of the numeric type.
0.95
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.86
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
3.52
Maximum entropy among attributes.
Minimum of means among attributes of the numeric type.
0.02
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.12
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.15
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum kurtosis among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
Second quartile (Median) of skewness among attributes of the numeric type.
0.77
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.71
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum of means among attributes of the numeric type.
2
The minimal number of distinct values among attributes of the nominal type.
31.25
Percentage of binary attributes.
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
0.42
Maximum mutual information between the nominal attributes and the target attribute.
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
1
Third quartile of entropy among attributes.
0.12
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
17.89
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
14
The maximum number of distinct values among attributes of the nominal type.
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
Third quartile of kurtosis among attributes of the numeric type.
0.51
Average class difference between consecutive instances.
0.76
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.93
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Maximum skewness among attributes of the numeric type.

26 tasks

24 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
1 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
48 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task