Data
BNG(JapaneseVowels)

BNG(JapaneseVowels)

active ARFF public domain Visibility: public Uploaded 12-11-2014 by Jan van Rijn
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • artificial BNG Language Speech Recognition study_16
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit

15 features

speaker (target)nominal9 unique values
0 missing
utterancenumeric986856 unique values
0 missing
framenumeric970199 unique values
0 missing
coefficient1numeric761354 unique values
0 missing
coefficient2numeric708598 unique values
0 missing
coefficient3numeric645962 unique values
0 missing
coefficient4numeric657494 unique values
0 missing
coefficient5numeric614145 unique values
0 missing
coefficient6numeric521809 unique values
0 missing
coefficient7numeric487744 unique values
0 missing
coefficient8numeric535190 unique values
0 missing
coefficient9numeric517920 unique values
0 missing
coefficient10numeric402546 unique values
0 missing
coefficient11numeric360295 unique values
0 missing
coefficient12numeric426719 unique values
0 missing

107 properties

1000000
Number of instances (rows) of the dataset.
15
Number of attributes (columns) of the dataset.
9
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
14
Number of numeric attributes.
1
Number of nominal attributes.
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
0.09
Mean skewness among attributes of the numeric type.
0.15
First quartile of standard deviation of attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.24
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
16.08
Percentage of instances belonging to the most frequent class.
1.71
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.18
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.19
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
160780
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
-0.46
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.79
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
3.13
Entropy of the target attribute values.
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
Maximum entropy among attributes.
-0.92
Minimum kurtosis among attributes of the numeric type.
-0.04
Second quartile (Median) of means among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.68
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
2.05
Maximum kurtosis among attributes of the numeric type.
-0.52
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.18
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.75
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
20.42
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
0.08
Second quartile (Median) of skewness among attributes of the numeric type.
0.79
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.13
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum mutual information between the nominal attributes and the target attribute.
9
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
0.23
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0
Number of attributes divided by the number of instances.
9
The maximum number of distinct values among attributes of the nominal type.
-0.35
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.23
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
1.41
Maximum skewness among attributes of the numeric type.
0.1
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
-0.35
Third quartile of kurtosis among attributes of the numeric type.
0.12
Average class difference between consecutive instances.
0.74
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
15.9
Maximum standard deviation of attributes of the numeric type.
7.81
Percentage of instances belonging to the least frequent class.
93.33
Percentage of numeric attributes.
0.37
Third quartile of means among attributes of the numeric type.
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
78122
Number of instances belonging to the least frequent class.
6.67
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.24
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.23
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
-0.34
Mean kurtosis among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0.24
Third quartile of skewness among attributes of the numeric type.
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.74
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
2.05
Mean of means among attributes of the numeric type.
0.24
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.63
First quartile of kurtosis among attributes of the numeric type.
0.41
Third quartile of standard deviation of attributes of the numeric type.
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.73
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-0.21
First quartile of means among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.24
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.23
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.78
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.18
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.72
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.74
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.89
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
9
Average number of distinct values among the attributes of the nominal type.
-0.25
First quartile of skewness among attributes of the numeric type.
0.79
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.87
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001

13 tasks

0 runs - estimation_procedure: 33% Holdout set - target_feature: speaker
288 runs - estimation_procedure: Interleaved Test then Train - target_feature: speaker
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task