Data
balance-scale

balance-scale

active ARFF Publicly available Visibility: public Uploaded 06-04-2014 by Jan van Rijn
2 likes downloaded by 18 people , 24 total downloads 0 issues 0 downvotes
  • artificial Machine Learning OpenML-CC18 OpenML100 shark-tutorial-demo-tag study_1 study_123 study_135 study_14 study_34 study_37 study_41 study_50 study_52 study_7 study_70 study_98 study_99 uci study_225 study_236 study_442 study_443 study_444 study_445 study_293 study_253 study_268 study_274 study_274 study_274 study_274 study_274 study_274 study_274 study_274 study_283 study_283 study_283 study_283 study_283 study_283 study_283 study_283 study_284 study_284 study_284 study_284 study_284 study_284 study_284 study_284 study_379 study_230
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Siegler, R. S. (donated by Tim Hume) Source: [UCI](http://archive.ics.uci.edu/ml/datasets/balance+scale) - 1994 Please cite: [UCI](https://archive.ics.uci.edu/ml/citation_policy.html) Balance Scale Weight & Distance Database This data set was generated to model psychological experimental results. Each example is classified as having the balance scale tip to the right, tip to the left, or be balanced. The attributes are the left weight, the left distance, the right weight, and the right distance. The correct way to find the class is the greater of (left-distance * left-weight) and (right-distance * right-weight). If they are equal, it is balanced. ### Attribute description The attributes are the left weight, the left distance, the right weight, and the right distance. ### Relevant papers Shultz, T., Mareschal, D., & Schmidt, W. (1994). Modeling Cognitive Development on Balance Scale Phenomena. Machine Learning, Vol. 16, pp. 59-88.

5 features

class (target)nominal3 unique values
0 missing
left-weightnumeric5 unique values
0 missing
left-distancenumeric5 unique values
0 missing
right-weightnumeric5 unique values
0 missing
right-distancenumeric5 unique values
0 missing

107 properties

625
Number of instances (rows) of the dataset.
5
Number of attributes (columns) of the dataset.
3
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
4
Number of numeric attributes.
1
Number of nominal attributes.
Minimal mutual information between the nominal attributes and the target attribute.
0
Second quartile (Median) of skewness among attributes of the numeric type.
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.3
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
3
Maximum of means among attributes of the numeric type.
3
The minimal number of distinct values among attributes of the nominal type.
0
Percentage of binary attributes.
1.42
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.01
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
0
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
Third quartile of entropy among attributes.
0.21
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
3
The maximum number of distinct values among attributes of the nominal type.
0
Maximum skewness among attributes of the numeric type.
1.42
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
-1.3
Third quartile of kurtosis among attributes of the numeric type.
0.7
Average class difference between consecutive instances.
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.42
Maximum standard deviation of attributes of the numeric type.
7.84
Percentage of instances belonging to the least frequent class.
80
Percentage of numeric attributes.
3
Third quartile of means among attributes of the numeric type.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
49
Number of instances belonging to the least frequent class.
20
Percentage of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0.2
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.21
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
-1.3
Mean kurtosis among attributes of the numeric type.
0.96
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
0
Third quartile of skewness among attributes of the numeric type.
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
3
Mean of means among attributes of the numeric type.
0.1
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
-1.3
First quartile of kurtosis among attributes of the numeric type.
1.42
Third quartile of standard deviation of attributes of the numeric type.
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.81
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
3
First quartile of means among attributes of the numeric type.
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.2
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.21
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
0
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0.21
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.63
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
3
Average number of distinct values among the attributes of the nominal type.
0
First quartile of skewness among attributes of the numeric type.
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.84
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0.2
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
0
Mean skewness among attributes of the numeric type.
1.42
First quartile of standard deviation of attributes of the numeric type.
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.2
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.92
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
1.42
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
0.21
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.64
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.16
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
46.08
Percentage of instances belonging to the most frequent class.
Minimal entropy among attributes.
-1.3
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.6
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
1.32
Entropy of the target attribute values.
0.7
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
288
Number of instances belonging to the most frequent class.
-1.3
Minimum kurtosis among attributes of the numeric type.
3
Second quartile (Median) of means among attributes of the numeric type.
0.85
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.65
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
3
Minimum of means among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.21
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.38
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
-1.3
Maximum kurtosis among attributes of the numeric type.

47 tasks

24833 runs - estimation_procedure: 10-fold Crossvalidation - target_feature: class
303 runs - estimation_procedure: 5 times 2-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
302 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: class
185 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: class
43 runs - estimation_procedure: 5 times 2-fold Crossvalidation - target_feature: class
32 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: precision - target_feature: class
0 runs - estimation_procedure: 33% Holdout set - target_feature: class
0 runs - estimation_procedure: 100 times 10-fold Crossvalidation - target_feature: class
0 runs - estimation_procedure: Leave one out - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 4-fold Crossvalidation - target_feature: class
306 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
179 runs - estimation_procedure: 10 times 10-fold Learning Curve - evaluation_measure: predictive_accuracy - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: pattern_team_auroc10 - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - evaluation_measure: pattern_team_auroc10 - target_feature: class
0 runs - estimation_procedure: 10-fold Learning Curve - target_feature: class
25 runs - estimation_procedure: Interleaved Test then Train - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - target_feature: class
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
1306 runs - target_feature: class
1302 runs - target_feature: class
1300 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
0 runs - target_feature: class
Define a new task