Data
pc2

pc2

active ARFF Publicly available Visibility: public Uploaded 06-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Computer Science Data Science Engineering mythbusting_1 PROMISE study_1 study_15 study_20 study_41 study_52 study_7
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Mike Chapman, NASA Source: [tera-PROMISE](http://openscience.us/repo/defect/mccabehalsted/pc2.html) - 2004 Please cite: Sayyad Shirabad, J. and Menzies, T.J. (2005) The PROMISE Repository of Software Engineering Databases. School of Information Technology and Engineering, University of Ottawa, Canada. PC2 Software defect prediction One of the NASA Metrics Data Program defect data sets. Data from flight software for earth orbiting satellite. Data comes from McCabe and Halstead features extractors of source code. These features were defined in the 70s in an attempt to objectively characterize code features that are associated with software quality. ### Relevant papers - Shepperd, M. and Qinbao Song and Zhongbin Sun and Mair, C. (2013) Data Quality: Some Comments on the NASA Software Defect Datasets, IEEE Transactions on Software Engineering, 39. - Tim Menzies and Justin S. Di Stefano (2004) How Good is Your Blind Spot Sampling Policy? 2004 IEEE Conference on High Assurance Software Engineering. - T. Menzies and J. DiStefano and A. Orrego and R. Chapman (2004) Assessing Predictors of Software Defects", Workshop on Predictive Software Models, Chicago

37 features

c (target)nominal2 unique values
0 missing
BRANCH_COUNTnumeric39 unique values
0 missing
CALL_PAIRSnumeric28 unique values
0 missing
LOC_CODE_AND_COMMENTnumeric79 unique values
0 missing
LOC_COMMENTSnumeric58 unique values
0 missing
CONDITION_COUNTnumeric36 unique values
0 missing
CYCLOMATIC_COMPLEXITYnumeric27 unique values
0 missing
CYCLOMATIC_DENSITYnumeric63 unique values
0 missing
DECISION_COUNTnumeric23 unique values
0 missing
DECISION_DENSITYnumeric29 unique values
0 missing
DESIGN_COMPLEXITYnumeric22 unique values
0 missing
DESIGN_DENSITYnumeric43 unique values
0 missing
EDGE_COUNTnumeric85 unique values
0 missing
ESSENTIAL_COMPLEXITYnumeric19 unique values
0 missing
ESSENTIAL_DENSITYnumeric2 unique values
0 missing
LOC_EXECUTABLEnumeric17 unique values
0 missing
PARAMETER_COUNTnumeric14 unique values
0 missing
HALSTEAD_CONTENTnumeric866 unique values
0 missing
HALSTEAD_DIFFICULTYnumeric480 unique values
0 missing
HALSTEAD_EFFORTnumeric1012 unique values
0 missing
HALSTEAD_ERROR_ESTnumeric87 unique values
0 missing
HALSTEAD_LENGTHnumeric226 unique values
0 missing
HALSTEAD_LEVELnumeric55 unique values
0 missing
HALSTEAD_PROG_TIMEnumeric983 unique values
0 missing
HALSTEAD_VOLUMEnumeric635 unique values
0 missing
MAINTENANCE_SEVERITYnumeric40 unique values
0 missing
MODIFIED_CONDITION_COUNTnumeric25 unique values
0 missing
MULTIPLE_CONDITION_COUNTnumeric36 unique values
0 missing
NODE_COUNTnumeric73 unique values
0 missing
NORMALIZED_CYLOMATIC_COMPLEXITYnumeric56 unique values
0 missing
NUM_OPERANDSnumeric137 unique values
0 missing
NUM_OPERATORSnumeric167 unique values
0 missing
NUM_UNIQUE_OPERANDSnumeric69 unique values
0 missing
NUM_UNIQUE_OPERATORSnumeric36 unique values
0 missing
NUMBER_OF_LINESnumeric109 unique values
0 missing
PERCENT_COMMENTSnumeric165 unique values
0 missing
LOC_TOTALnumeric83 unique values
0 missing

107 properties

5589
Number of instances (rows) of the dataset.
37
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
36
Number of numeric attributes.
1
Number of nominal attributes.
Third quartile of mutual information between the nominal attributes and the target attribute.
0
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.01
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
Average entropy of the attributes.
23
Number of instances belonging to the least frequent class.
2.7
Percentage of nominal attributes.
27.19
Third quartile of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
682.05
Mean kurtosis among attributes of the numeric type.
0.82
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
First quartile of entropy among attributes.
17.95
Third quartile of standard deviation of attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
80.9
Mean of means among attributes of the numeric type.
0.04
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
25.92
First quartile of kurtosis among attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.01
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
Average mutual information between the nominal attributes and the target attribute.
0.07
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.98
First quartile of means among attributes of the numeric type.
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
1
Number of binary attributes.
First quartile of mutual information between the nominal attributes and the target attribute.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0
Standard deviation of the number of distinct values among attributes of the nominal type.
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
2
Average number of distinct values among the attributes of the nominal type.
3.46
First quartile of skewness among attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.83
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
17.15
Mean skewness among attributes of the numeric type.
1.62
First quartile of standard deviation of attributes of the numeric type.
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.01
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
99.59
Percentage of instances belonging to the most frequent class.
840.55
Mean standard deviation of attributes of the numeric type.
Second quartile (Median) of entropy among attributes.
433.26
Second quartile (Median) of kurtosis among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.04
Entropy of the target attribute values.
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
5566
Number of instances belonging to the most frequent class.
Minimal entropy among attributes.
2.05
Second quartile (Median) of means among attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.77
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
Maximum entropy among attributes.
-1.02
Minimum kurtosis among attributes of the numeric type.
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
2756.12
Maximum kurtosis among attributes of the numeric type.
0.03
Minimum of means among attributes of the numeric type.
17.54
Second quartile (Median) of skewness among attributes of the numeric type.
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
2498.3
Maximum of means among attributes of the numeric type.
Minimal mutual information between the nominal attributes and the target attribute.
5.42
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.01
Number of attributes divided by the number of instances.
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
2.7
Percentage of binary attributes.
Third quartile of entropy among attributes.
0.01
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
2
The maximum number of distinct values among attributes of the nominal type.
-2.77
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
1148.83
Third quartile of kurtosis among attributes of the numeric type.
0.99
Average class difference between consecutive instances.
0.04
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
45.84
Maximum skewness among attributes of the numeric type.
0.15
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
7.42
Third quartile of means among attributes of the numeric type.
0.49
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.52
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
27917.17
Maximum standard deviation of attributes of the numeric type.
0.41
Percentage of instances belonging to the least frequent class.
97.3
Percentage of numeric attributes.

17 tasks

592 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: c
212 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: c
0 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: f1 - target_feature: c
0 runs - estimation_procedure: 33% Holdout set - evaluation_measure: predictive_accuracy - target_feature: c
71 runs - estimation_procedure: 10-fold Learning Curve - target_feature: c
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: c
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task