Data
flags

flags

active ARFF Publicly available Visibility: public Uploaded 04-10-2014 by Joaquin Vanschoren
0 likes downloaded by 0 people , 0 total downloads 0 issues 0 downvotes
  • Data Processing Image Analysis Machine Learning mythbusting_1 study_1 study_144 study_15 study_20 study_7 study_88
Issue #Downvotes for this reason By


Loading wiki
Help us complete this description Edit
Author: Source: Unknown - Date unknown Please cite: Binarized version of the original data set (see version 1). The multi-class target feature is converted to a two-class nominal target feature by re-labeling the majority class as positive ('P') and all others as negative ('N'). Originally converted by Quan Sun.

29 features

binaryClass (target)nominal2 unique values
0 missing
name (ignore)nominal194 unique values
0 missing
landmassnominal6 unique values
0 missing
zonenominal4 unique values
0 missing
areanumeric136 unique values
0 missing
populationnumeric48 unique values
0 missing
languagenominal10 unique values
0 missing
religionnominal8 unique values
0 missing
barsnominal5 unique values
0 missing
stripesnominal12 unique values
0 missing
coloursnominal8 unique values
0 missing
rednominal2 unique values
0 missing
greennominal2 unique values
0 missing
bluenominal2 unique values
0 missing
goldnominal2 unique values
0 missing
whitenominal2 unique values
0 missing
blacknominal2 unique values
0 missing
orangenominal2 unique values
0 missing
mainhuenominal8 unique values
0 missing
circlesnominal4 unique values
0 missing
crossesnominal3 unique values
0 missing
saltiresnominal2 unique values
0 missing
quartersnominal3 unique values
0 missing
sunstarsnominal14 unique values
0 missing
crescentnominal2 unique values
0 missing
trianglenominal2 unique values
0 missing
iconnominal2 unique values
0 missing
animatenominal2 unique values
0 missing
textnominal2 unique values
0 missing
topleftnominal7 unique values
0 missing

107 properties

194
Number of instances (rows) of the dataset.
29
Number of attributes (columns) of the dataset.
2
Number of distinct values of the target attribute (if it is nominal).
0
Number of missing values in the dataset.
0
Number of instances with at least one value missing.
2
Number of numeric attributes.
27
Number of nominal attributes.
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .001
34.9
An estimate of the amount of irrelevant information in the attributes regarding the class. Equals (MeanAttributeEntropy - MeanMutualInformation) divided by MeanMutualInformation.
14
Number of binary attributes.
0
First quartile of mutual information between the nominal attributes and the target attribute.
0.32
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
3.48
Standard deviation of the number of distinct values among attributes of the nominal type.
0.31
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .001
4.44
Average number of distinct values among the attributes of the nominal type.
6.76
First quartile of skewness among attributes of the numeric type.
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.34
Error rate achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.61
Area Under the ROC Curve achieved by the landmarker weka.classifiers.lazy.IBk
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .001
7.66
Mean skewness among attributes of the numeric type.
91.93
First quartile of standard deviation of attributes of the numeric type.
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.37
Error rate achieved by the landmarker weka.classifiers.lazy.IBk
64.43
Percentage of instances belonging to the most frequent class.
1131.43
Mean standard deviation of attributes of the numeric type.
0.89
Second quartile (Median) of entropy among attributes.
0.32
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.94
Entropy of the target attribute values.
0.21
Kappa coefficient achieved by the landmarker weka.classifiers.lazy.IBk
125
Number of instances belonging to the most frequent class.
0.31
Minimal entropy among attributes.
69.25
Second quartile (Median) of kurtosis among attributes of the numeric type.
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 2
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.6
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump
2.88
Maximum entropy among attributes.
56.45
Minimum kurtosis among attributes of the numeric type.
361.66
Second quartile (Median) of means among attributes of the numeric type.
0.32
Error rate achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0.36
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump
82.05
Maximum kurtosis among attributes of the numeric type.
23.27
Minimum of means among attributes of the numeric type.
0.02
Second quartile (Median) of mutual information between the nominal attributes and the target attribute.
0.22
Kappa coefficient achieved by the landmarker weka.classifiers.trees.REPTree -L 3
0
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump
700.05
Maximum of means among attributes of the numeric type.
0
Minimal mutual information between the nominal attributes and the target attribute.
7.66
Second quartile (Median) of skewness among attributes of the numeric type.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.15
Number of attributes divided by the number of instances.
0.16
Maximum mutual information between the nominal attributes and the target attribute.
2
The minimal number of distinct values among attributes of the nominal type.
48.28
Percentage of binary attributes.
1131.43
Second quartile (Median) of standard deviation of attributes of the numeric type.
0.37
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
26.88
Number of attributes needed to optimally describe the class (under the assumption of independence among attributes). Equals ClassEntropy divided by MeanMutualInformation.
14
The maximum number of distinct values among attributes of the nominal type.
6.76
Minimum skewness among attributes of the numeric type.
0
Percentage of instances having missing values.
1.99
Third quartile of entropy among attributes.
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 1
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .00001
8.57
Maximum skewness among attributes of the numeric type.
91.93
Minimum standard deviation of attributes of the numeric type.
0
Percentage of missing values.
82.05
Third quartile of kurtosis among attributes of the numeric type.
0.55
Average class difference between consecutive instances.
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.31
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .00001
2170.93
Maximum standard deviation of attributes of the numeric type.
35.57
Percentage of instances belonging to the least frequent class.
6.9
Percentage of numeric attributes.
700.05
Third quartile of means among attributes of the numeric type.
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.37
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .00001
1.25
Average entropy of the attributes.
69
Number of instances belonging to the least frequent class.
93.1
Percentage of nominal attributes.
0.06
Third quartile of mutual information between the nominal attributes and the target attribute.
0.34
Error rate achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.25
Kappa coefficient achieved by the landmarker weka.classifiers.trees.RandomTree -depth 2
0.73
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.J48 -C .0001
69.25
Mean kurtosis among attributes of the numeric type.
0.61
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes
0.63
First quartile of entropy among attributes.
8.57
Third quartile of skewness among attributes of the numeric type.
0.28
Kappa coefficient achieved by the landmarker weka.classifiers.trees.DecisionStump -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.62
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.31
Error rate achieved by the landmarker weka.classifiers.trees.J48 -C .0001
361.66
Mean of means among attributes of the numeric type.
0.39
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes
56.45
First quartile of kurtosis among attributes of the numeric type.
2170.93
Third quartile of standard deviation of attributes of the numeric type.
0.74
Area Under the ROC Curve achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W
0.37
Error rate achieved by the landmarker weka.classifiers.trees.RandomTree -depth 3
0.34
Kappa coefficient achieved by the landmarker weka.classifiers.trees.J48 -C .0001
0.03
Average mutual information between the nominal attributes and the target attribute.
0.12
Kappa coefficient achieved by the landmarker weka.classifiers.bayes.NaiveBayes
23.27
First quartile of means among attributes of the numeric type.
0.63
Area Under the ROC Curve achieved by the landmarker weka.classifiers.trees.REPTree -L 1
0.34
Error rate achieved by the landmarker weka.classifiers.bayes.NaiveBayes -E "weka.attributeSelection.CfsSubsetEval -P 1 -E 1" -S "weka.attributeSelection.BestFirst -D 1 -N 5" -W

15 tasks

140 runs - estimation_procedure: 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 10 times 10-fold Crossvalidation - evaluation_measure: predictive_accuracy - target_feature: binaryClass
0 runs - estimation_procedure: 33% Holdout set - target_feature: binaryClass
0 runs - estimation_procedure: Interleaved Test then Train - target_feature: binaryClass
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
0 runs - estimation_procedure: 50 times Clustering
Define a new task